KN O0
< NV
Centre of Excellence KBNS
P S0

MICROCARD-2

VA
%vﬁ‘ N <«

5 MICROCARD

Deliverable 5.2 (public)

ParMmg enhanced user guide

PROJECT INFORMATION

DELIVERABLE INFORMATION

[T
[TTTTT

o)

/_[_f_lj

Grant agreement number 101172576

Project acronym
Project title

Start date of the project
Duration of the project
Call

Topic
Scientific coordinator

Deliverable number
Dissemination level
Work package

Tasks

WP leader

Lead beneficiary
Authors

Reviewers

Due date of Deliverable
Submission date

MICROCARD-2

Numerical modeling of cardiac electrophysiology at the
cellular scale

1 November 2024

30 months

HORIZON-EUROHPC-JU-2023-COE-03 — Centres Of
Excellence For Exascale HPC Applications
HORIZON-EUROHPC-JU-2023-COE-03-01

Mark Potse (UBx)

5.2

public

5

5.1

Mark Potse

Inria

Mark Potse

Algiane Froehly, Corentin Prigent, Luca Cirrottola
31 October 2025 (M12)

31 October 2025

* 3 RN Co-funded by
* * 33§ EurOHPc * * .
* **jgﬁ Joint Undertaking L the European Union
*

MICROCARD-2 D5.2 ParMmg enhanced user guide page 2 of 23

Contents
PROJECT SUMMARY 4
DELIVERABLE SUMMARY 4
1 Introduction S
2 Concepts 5
2.1 meshentities 5
2.2 meshproperties e 8
3 Overview 9
3.1 ParMmg Algorithm 9
3.2 RunningParMmg 10
4 Command-line arguments 10
4.1 Common options formmg3dandParMmg 10
4.2 Specific ParMmgoptions Lo 15
5 Parameter file 16
6 Environment variables 16
7 Error and warning messages 16
8 Common problems 17
9 File formats 17
9.1 nativemeshformat 17
9.2 dataor“solution”files 18
9.3 distributed .meshformat, 18
9.4 otherfileformats 21
10 Other sources of information 22
References 23

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or EuroHPC. Neither the European Union nor the granting authority
can be held responsible for them. The project is supported by the EuroHPC Joint Undertaking and its members
(including top-up funding by ANR, BMBF, and Ministero dello sviluppo economico).

History of changes

version date change history authors partner
Vi 23/10/2025 Initial version Mark Potse UBx
V2 24/10/2025 corrections, new topics Mark Potse UBx
V3 27/10/2025 included corrections by Algiane Froehly Mark Potse UBx
V4 28/10/2025 included corrections by Corentin Prigent Mark Potse UBx
V5 29/10/2025 included corrections by Luca Cirrottola Mark Potse UBx
Vo6 30/10/2025 corrections Mark Potse UBx
List of beneficiaries

nr organisation name short name country PI

1 Université de Bordeaux UBx France Mark Potse

2 Universita degli studi di Pavia UPavia Italy Luca Pavarino

3 Zuse Institute Berlin ZIB Germany Martin Weiser

4 Karlsruhe Institute of Technology KIT Germany Axel Loewe

5 Technical University Miinchen TUM Germany Hartwig Anzt

6 Simula Research Laboratory AS Simula Norway Aslak Tveito

7 Universita di Trento UTrento Italy Simone Pezzuto

8 Inria Inria France Olivier Aumage

9 Université de Strasbourg Unistra France Vincent Loechner
10 MEGWARE Computer Vertrieb und MEGWARE Germany Axel Auweter

Service GMBH

PROJECT SUMMARY

Cardiac function is coordinated by an electric system whose disorders are among the most
frequent causes of death and disease. Numerical models of this complex system are mature
and widely used, but to match observations in aging and diseased hearts they need to move
from a continuum approach to a representation of individual cells and their interconnections.
This makes the problem more complex, harder to solve, and four orders of magnitude larger,
necessitating exascale computers.

The EuroHPC-2019 MICROCARD project developed a simulation platform that can meet this
challenge, by a joint effort of HPC experts, numerical scientists, biomedical engineers, and
biomedical scientists, from academia and industry. The Centre of Excellence MICROCARD-2
will consolidate and scale up the MICROCARD results enabling digital twins of cardiac tissue.

We will further develop MICROCARD’s numerical schemes, moving to second-order spatial
discretization. We will develop mixed-precision preconditioners and data compression to reduce
communication bandwidth. The highly successful efforts made in MICROCARD towards
automated compilation of high-level model descriptions into optimized, energy-efficient system
code for different CPUs and GPUs will be extended to upcoming architectures. We will continue
efforts to robustify parallel remeshing software and add necessary functionality for parallel mesh
partitioning and production of realistic synthetic tissue meshes needed for simulations.

The platform will be benchmarked with realistic test cases and be made accessible for a wide
range of users with tailored workflows. It will be adaptable to similar biological systems such as
nerves, and several of our products such as improved solvers, preconditioners, remeshers, and
partitioners will be reusable in a wide range of applications.

DELIVERABLE SUMMARY

The remeshing software mmg3d and its parallel version, ParMmg, are crucial tools for the MI-
CROCARD projects. We have previously improved the robustness of these codes, in particular
with respect to their ability to handle multimaterial meshes. However, since ParMmg is still an
experimental code a user guide has been lacking so far. This report is a newly written user guide
for ParMmg and it also covers important aspects of mmg3d which the existing documentation
did not cover.

1 Introduction

mmg3d [1, 2] is a mesh adaptation code for unstructured meshes with a particularly developed
ability to handle multimaterial meshes, that is, meshes in which the volume elements are labeled
with “references” and boundaries between elements with different references are preserved as
internal surfaces. Mmg3d is available as a library and as a standalone program. The library is
used in numerous applications and is widely used in academia. Its capabilities include

* improvement of element quality,

* adaptation of edge lengths to a possibly anisotropic and/or inhomogeneous metric,
e lagrangian movement of boundaries, and

* level-set discretization.

ParMmg is a process-parallel version of mmg3d [3, 4], initiated by Cécile Dobrzynski. In
contrast to mmg3d it is not maintained by the Inria-led Mmg Consortium, but it was developed
at Inria, with support from the European Union and national funding organizations. The code
has a smaller developer base, and less developed documentation than the other members of the
Mmg family.

This report provides a user manual for ParMmg, and covers mmg3d as well, but not its siblings
mmg2d and mmgs, which are surface remeshing codes. The mmg3d and ParMmg programs
share many concepts and options. In the following description we will write Mmg when we
refer to either program.

2 Concepts

2.1 mesh entities

Boundaries are the same as surfaces.

Corners are vertices that are treated specially by the remesher. Continuity of surfaces and
ridges will not be preserved at corners. The surface regularization (-xreg option) will
leave corners in place, just like required vertices. (In fact, in mmg3d-5.7.0, the surface
regularization did not respect required vertices but it did respect corners. In version 5.8
required vertices are respected too.) Mmg creates a corner when

1. three or more edges meet at a vertex,
2. one edge that is marked as ridge, required or non-manifold ends at a vertex, or
3. two edges with different references meet at a vertex.
Corners are specified in the .mesh format using the Corners keyword, using vertex indices.

Edges are straight line segments that connect a pair of vertices. Edges can be said to exist
implicitly as parts of triangles or tetrahedra, but here edges refers to those edges that are
explicitly declared in the input, inner workings, or output of Mmg. In fact, edges can
only be created if they already exist implicitly as part of a tetrahedron. Edges specified
explicitly in the input are reference edges, They are meaningful to Mmg if they are turned
into feature edges by marking them as ridges or by making them required. In the .mesh

5
R
PR
Y,

Figure 1: Example of a multimaterial mesh, remeshed with mmg3d. The colors distinguish the
materials. In this case a mesh of cardiac tissue is shown, in which each cell has its own material
and the space between the cells is partitioned, each part also having its own material.

format (section 9), edges are specified by the Edges keyword, with two vertex numbers
and a reference each.

Domains are sets of elements (usually tetrahedra) with the same reference.

Feature edges are reference edges and edges that are listed as ridges. When one, three, or more
than three feature edges meet in a vertex, Mmg will make this vertex a corner.

Non-manifold edges are (explicit or implicitly-defined) edges that are surrounded by tetrahedra
with 3 or more references. The non-manifoldness refers to the surfaces in this case; the
volume remains manifold.

Parts or Partitions are subsets of meshes or graphs. The proper term is “part” but the word
“partition” is often used, also by the developers of Mmg, and therefore occurs in data
keywords for example. For Mmg, parts are (usually compact) sets of volumic elements
such as fetrahedra. Lower-dimensional entities such as vertices can be shared by parts.

References are integer tags that can be given to all mesh entities. They can influence the
detection of reference edges and surfaces. References must be nonnegative; negative
values are reserved for internal purposes.

Reference edges are edges between two triangles with different references [1] or edges explicitly
provided in Mmg input (in this case they can be between two triangles with the same
reference). The treatment will be the same in both cases.

Required entities are mesh entities that must remain as they are. That is, they cannot be deleted
and their properties (coordinates and reference) and sub-entities must remain the same.
The entity’s index in the mesh can change though. Mmg recognizes required vertices,
edges, triangles, quadrilaterals, and tetrahedra.

When Mmg reads required entities, it will make their sub-entities required in the output.

Required vertices are vertices that must remain where they are: they cannot be deleted or
moved. In the .mesh format, required vertices are specified with the RequiredVertices
keyword. Sometimes Mmg adds required vertices when it encounters a situation that it
cannot handle.

Required edges are edges that must remain where they are. This means that the vertices at their

ends are treated as required vertices and the edge cannot disconnect from either of them
(it cannot be split, swapped or collapsed, for example). Sometimes Mmg adds required
edges when it encounters a situation that it cannot handle. Required edges can be specified
in the .mesh format with the RequiredEdges keyword.
Currently (Mmg version 5.8.0/ParMmg version 1.5.0) Mmg does not always preserve the
required status of edges. It does not do so, for example, for edges that do not lie on any
tetrahedron with face tags or references. Loosely said, required edges are lost when they
do not lie on surfaces, boundaries, or on triangles with a nonzero reference. (Technically:
the status can be lost if none of the tetrahedra neighbouring the edge has a face tag or a
face reference. If they don’t have these, the data structures that would store the required
status can be removed.)

Required triangles are triangles that must remain where they are. This means that all three of
their edges are treated as required edges and their vertices as required vertices. Moreover,
no new vertices can be inserted in the triangle (this is an operation that Mmg will currently
not perform anyway, but it may do so in the future). Required triangles can be specified
in the .mesh format with the RequiredTriangles keyword.

Normally Mmg respects triangles and therefore required triangles only if they occur at
the interface between two different domains or on the outer mesh boundary. When the
-opnbdy option is given, other required triangles are also preserved.

Required tetrahedra are tetrahedra that must remain where they are. This means that all of
their triangles, edges, and vertices are treated as required. Moreover, no vertices can be
inserted inside.

Ridges are edges with a ridge flag. This flag can be set when the edge is marked as a ridge
in the input, or when ridge detection is activated and the angle between the normals of
the (two) triangles of a surface edge exceeds the ridge detection threshold. Internally,
non-manifold edges (junctions between more than 3 domains) are also treated as ridges,
but since version 5.7 these will generally not be mentioned as such in the output. When an
edge is flagged as a ridge, surface smoothing will not be applied to its adjacent triangles.
Ridge flags are always exported.

Solutions are numerical fields defined on mesh entities (usually vertices). They can be scalar,
vector, or tensor, and can serve as metric, level-set function, or size map. They can be
stored in the .sol data format described above.

Surfaces are sets of triangles whose two tetrahedra have different references, or that have only
one tetrahedron (i.e. they form the outer surface of the mesh). Surfaces can be remeshed
but their geometry will be preserved within the limits imposed by the -hausd parameter.

Tetrahedra are three-dimensional simplices. They are defined by four vertex numbers and a
reference. Tetrahedron references define domains for Mmg, and are preserved, even when
the tetrahedra themselves are not.

Triangles are two-dimensional simplices defined by three vertex numbers and a reference. In
Mmg input they are usually only needed when mesh triangles need to be made required.
Mmg will add triangles on all boundaries. It expects either all boundary triangles to be
provided, or none. If boundaries are partially provided, Mmg will complete them and give
awarning. Moreover, if the -opnbdy option is not given, Mmg will remove (non-required)
triangles whose two tetrahedra have the same reference. Triangles and their references
in Mmg output can be important for simulation codes as they are often used to specify
boundary conditions.

Vertices are the most basic mesh entity. They are points in 3D space, defined by three cartesian
coordinates and a reference.

2.2 mesh properties

2.2.1 valid and conforming meshes

Meshes are usually required to be valid and conforming. A tetrahedral mesh is valid if the
interiors of any pair of tetrahedra are mutually disjoint, i.e. their intersection is empty. A
tetrahedral mesh is conforming if it is valid and the intersection of the two tetrahedra is limited
to a vertex, an edge, or a face of the mesh.

2.2.2 non-manifolds

Meshes are usually expected to be manifold: surfaces have two sides that cannot be reached
from the other side and the boundaries of volume domains are surfaces. But Mmg can handle
non-manifoldness to some extent.

A volumetric mesh can have multiple domains. The boundaries between these domains together
define a non-manifold surface, as different boundaries touch or cross each other. Mmg tolerates
this, and can even regularize the boundaries while leaving their intersections intact and in place.
For this purpose it treats them internally as ridges.

Level set discretization can be performed on multiple volumetric domains, and it can work
correctly even if the volumes are not strictly manifold (e.g. two tetrahedra of the same domain
touching only on a vertex or an edge, with the surrounding space belonging to another domain).
However, the resulting mesh will be difficult for the remesher and probably also for simulation
software that uses it.

Remeshing of a non-manifold multimaterial mesh can result in errors, as Mmg performs tests
on the weak spots to see if edges can be swapped, for example.

3 Overview

Mmg performs operations on tetrahedral meshes. By defaults it performs mesh modifications in
order to bring the edge lengths in the mesh into the specified range, while striving to observe also
the specified gradation, the maximum ratio of adjacent edge lengths. These operations generally
result in improved element quality, even if Mmg does not target element quality explicitly.

The desired edge lengths can be provided in several ways. The -hmin and -hmax arguments
specify bounds, and are intended to avoid numerical issues. Target edge lengths can be provided

* using -hsiz (for constant and isotropic edge length),
* using -optim to improve the mesh quality using the input edge lengths as a guide, or
* using a metric file (for local and/or anisotropic edge lengths).

Mmg has two different mesh improvement algorithms, named Delaunay and Pattern. The
Delaunay algorithm is used in optimization mode and the Pattern algorithm in level-set mode.
The Pattern algorithm is more robust with respect to ambiguities in the connectivity of domains
in multidomain cases, but in other situations the reports vary.

When not explicitly disabled, this mesh improvement is always performed. It can be preceded
by two other operations: level-set discretization and lagrangian displacement [5].

level-set discretization When a file containing a level-set function is provided, the -1s option
allows to explicitly mesh an implicit domain and the -1ssurf option splits only mesh boundaries
on a provided isovalue. The file should be in Mmg’s .sol format (see section 9) and should
specify the function values on the vertices of the mesh.

lagrangian displacement When a displacement file is provided, the mmg3d -lag option
applies a lagrangian displacement to boundary mesh vertices. This option is not yet available in
ParMmg, and only available in mmg3d if it is compiled with the USE_ELAS directive.

return value Mmg returns

0 if successful,
1 if the process failed but could save a conforming mesh, and
2 if the process failed and couldn’t save a conforming mesh.

3.1 ParMmg Algorithm

ParMmg works by partitioning a mesh (or reading an already partitioned mesh) and performing
serial remeshing on the parts, with the part boundaries fixed. After remeshing, the mesh is
repartitioned with different boundaries and the parts are serially remeshed again. This process
is iterated several times. The default number of iterations is 3, but up to 20 iterations may be
needed for hard meshes.

Optionally, ParMmg can further divide the parts into mesh groups, which are remeshed individ-
ually, also with their boundaries fixed [4]. Instead of remeshing one part, each ParMmg process
now remeshes several groups one by one. The underlying idea is that remeshing time is more

than proportionally smaller for small meshes. However, experience showed that the increased
number of iterations needed because of the extra fixed boundaries can offset this advantage.

3.2 Running ParMmg

In order to enable parallel operation using the message passing interface (MPI), ParMmg is
typically run with the mpirun program or an equivalent. For example:

mpirun -np 8 parmmg_03 -hmin 1 -hmax 3 input.mesh

Because ParMmg must perform multiple iterations and needs to repartition inbetween, it can
be expected to need about 4 processes to achieve the same runtime as the serial mmg3d. The
speedup with more processes greatly depends on the size of the mesh parts.

4 Command-line arguments

4.1 Common options for mmg3d and ParMmg

There can be two non-option arguments. The first is taken to be the input mesh, and the second
as the output mesh. If the first is (basename) .mesh(b), then Mmg will attempt to read a file
(basename) . sol which is assumed to be a metric file, except when the -1s option is given: in
that case it is assumed to contain the level set function. The files that Mmg reads and writes can
also be specified with options, as detailed in section 4.1.2. The extension of the output filename
determines the output file format, as detailed in the description of the -out option.

In addition to the output mesh, Mmg will always write a file (basename) . sol, which contains
a metric.

4.1.1 General options

-h : Print help.
-v (integer) Tune the level of verbosity. This option takes values between —1 and 10.
0 i1s the lowest verbosity. The libraries don’t print anything and the applications print
minimal information (release, copyright, building date, input and output filenames);
1 isthe default verbosity. It adds the input and output mesh qualities (minimal, maximal
and mean element quality + index of the lowest quality element), a summary of the
remeshing waves and information about the output mesh (number of each entity);
2 adds informations about the edge lengths (smallest, average and largest edge length
+ indices of the smallest and largest edges);
adds statistics about the edge length;
adds histograms of mesh quality and edge length and some analysis information;
adds more detailed remeshing waves and more analysis information;
prints every wave of remeshing.

AN L A W

-m (integer) allows to set the maximal amount of memory that Mmg may use (in MB). By

default, mmg3d allows itself to take half the physical memory of the machine. ParMmg
takes all the memory available on the node and distributes it among the MPI processes
running on the same node. While mmg3d checks this limit strictly and terminates if it
detects that it will need more, ParMmg is more permissive: it tries to respect the limit, but
as in several part of the software the distributed mesh cannot be saved while maintaining
its conformity through the parts, it tries to pursue until a step where the mesh will be valid.

-d Turn on debug mode. This will cause extra tests to be performed.
-default Write a local parameter file (with extension .mmg3d) with the values that were set.

-val

Details about parameter files can be found in section 5.
Print the default parameter values.

4.1.2 File specification

-in (filename) Input mesh. From (filename) Mmg will extract (basename), consisting of

-out

-sol

-met

everything before the extension. Recognized extensions are listed under the -out option.
If the extension is .mesh or .meshb and the file does not exist, ParMmg will use the
filename to extract (basename) and attempt to read the files (basename) . (index) . mesh (b)
where (index) is an integer ranging from O to the number of processes with which ParMmg
is running. This set of files must represent a distributed mesh with as many parts as there
are processes. If the files specify a different number of parts then ParMmg will emit an
error message and stop.

(filename) Output mesh file. If this option is not given, the second non-option argument
is taken as the output filename. If that is not present either, the output filename will be
(basename) . o0 .mesh.

Similar to input files, ParMmg can translate this name into a series of filenames, one for
each process.

The filename extension determines in which format the mesh is written. Mmg3d and
ParMmg recognize .mesh and .meshb (section 9). Mmg3d in addition recognizes .vtu
(VTK format), while ParMmg recognizes also .h5 and .xdmf for HDFS5 format (sec-
tion 9.4), and . pvtu for the parallel version of the VTK format. HDF and VTK output are
only available if ParMmg was compiled with the necessary libraries, which is optional.
When ParMmg writes parallel output in .mesh or .meshb format it writes one file per
process. In all other cases the output is written in a single file.

(filename) specifies that the metric, displacement or level-set function should be read
from this file rather than from the default (basename).sol. The metric can also be
specified with the -met option. The displacement is only used in lagrangian mode, the
level set only in level-set mode, and the metric can be used in all modes. In mesh
adaptation mode, either -sol or -met can be given, but not both, because there are then
no other inputs than the metric. For the definition of the metric see the description of the
-met option below.

(filename) Specifies the metric file [6]. This can be used instead of -sol in adaptation
mode, and in addition to -sol in level-set mode. It has no effect in lagrangian mode.

When a metric is given, Mmg strives to create edges that have unit length under the given
metric. In other words, for an edge specified by a vector e and a metric specified by a
tensor M, Mmg tries to approach e’Me = 1. In its most general form, M is a symmetric
positive-definite tensor of rank 3 and order 2. To specify such a tensor, 6 elements must
be specified: myy, mia, m3, ma, my3, ms3z. Attention: the order in a .sol file is very
unusual: myy, mip, myy, my3, mo3, ms3. In the mmg3d API the order is normal. If the
tensor is diagonal, only the 3 diagonal elements need to be specified. An isotropic tensor,
equivalent to a scalar metric, can be specified with a single number.
-f (filename) Parameter file to load (see section 5)

4.1.3 Mode specification

The default mode is mesh adaptation. The following options change the mode.

-lag (integer) (only in mmg3d)
Lagrangian mesh displacement according to mode O, 1 or 2. This option is only available
when Mmg was compiled with the USE_ELAS compilation flag. The LinearElasticity
library must be found to activate this flag. If this option is specified, the -sol option is
supposed to specify a file containing a displacement vector for each vertex in the mesh.
Mmg provides 3 different Lagrangian displacement modes:
0 the object is moved inside the mesh using point relocation only (constant connectiv-
ity);
1 edge swapping is allowed but there is no point insertion/collapse;
2 all operators of the remsher are allowed (point insertion/collapse, edge swapping,
point relocation).
In the first mode, only relatively small displacements can be achieved.

-1s (float) Perform level-set discretization, i.e. cut mesh edges where the given function (see
above) has the given value, or is zero, when no value is provided. The mesh elements
on both sides of the level set will be given different references. The values given can
be controlled with a parameter file (section 5). If the input mesh already has different
domains, the two references for each of them can be controlled individually.

-1lssurf (float) Split only the boundary, not the volume, on the level set.

-isoref (integer) Choose the reference of the inserted iso-surface in level-set discretization
mode

4.1.4 Parameters

-A Enable anisotropy (without metric file).

-ar (float) Threshold for angle detection. Boundary edges whose two face outward normals
have an angle larger than this threshold will be treated internally as ridges. This has
various consequences; among others such edges cannot be swapped. Thus, ridges create
constraints for the remesher, and it can be desirable to limit their detection. With the
-nr option the detection can be disabled entirely. If necessary, ridges that should be
recognized can also be specified in the input mesh.

The angle is specified in degrees, the default value is 45. Internally, Mmg uses the cosine
of this angle to take decisions. Setting the angle to O or 180 degrees disables angle
detection like -nr does.

-nr Disable angle detection. Boundary edges whose two face normals have an angle larger than
this threshold will be treated internally as ridges. This has various consequences; among
others such edges cannot be swapped. Thus, ridges create constraints for the remesher,
and it can be desirable to disable their detection. With the -ar option the detection can
also be restricted above a given threshold. If necessary, ridges that should be recognized
can also be specified in the input mesh.

-hmin (float)

-hmax (float) These options allow to truncate the edge lengths to be greater than the hmin
parameter and lower than hmax. The default values for these parameters are computed
from the mesh bounding box or, if provided, from the given metric:

» without metric, hmin is set to 0.01 times the bounding box size and hmax to two
times the bounding box size.

e with metric, hmin is set to 0.1 times the smallest prescribed size and hmax to 10
times the maximal prescribed size.

-hsiz (float) Strive for a constant edge length of this value.

-hausd (float) Control the allowed Hausdorff distance between the surface mesh and the
underlying surface geometry. The Hausdorff distance is the maximum of the maxima of
the distances from any point on one mesh to the other mesh. The distance is specified in
the same units as the mesh. The default value is 0.01.

-hgrad (float) Limit the gradation (maximum ratio of edge lengths for edges that touch the
same vertex). The default value is 1.3.

-hgradreq (float) Control the gradation from required entities toward others. The default
value is 2.3.

-rmc [(float)] In level-set mode, remove components whose volume fraction is less than this
value (107 if no value is provided) of the whole mesh volume. This option is not available
in ParMmg.

-opnbdy Preserve input triangles at the interface of two domains of the same reference. By
default, Mmg considers only boundaries that are delimiting the mesh (external boundaries)
or that are at the interface between two different domains (internal boundaries). Thus, if
the input contains a portion of surface (defined by Triangles in the mesh) that is not at
the interface between two domains (defined by tetrahera with different references), this
surface is deleted. With the -opnbdy option such surfaces will be retained. This option is
not available in ParMmg.

-nofem Do not force Mmg to create a “finite element mesh” (FEM). A FEM will not have
tetrahedra with multiple boundary faces. A FEM requirement puts extra constraints on
the remesher, so it can be useful to relax this demand.

This option may be replaced by a positive -fem option in future versions of Mmg.

-noinsert Forbidinsertion or deletion of points. The sequence -noinsert -nomove -noswap
forbids all changes to the mesh. This can be useful to separate level-set discretization
from mesh improvement.

-nomove forbids point relocation operators.

-noswap forbids edge-flipping and face-flipping operators.

-nosurf This option ensures that surfaces will not be modified, by making Mmg consider
all surface edges as required edges. A side effect of this is that, because the lengths of
required edges dictates the length of adjacent edges, all edge lengths near surfaces will
adapt to the lengths of all surface edges and not just the required ones. This effect can be
disabled with the -nosizreq option. The -nosurf option is to some extent redundant
when the -noinsert -nomove -noswap options together: then all mesh modifications
are disabled and nothing can happen to the surfaces. However, -nosurf also avoids a
possibly costly analysis phase. For fastest operation, therefore, all four options should be
given if no mesh improvement is required.

-nosizreq No imposition of the size of required edges over required vertices. Normally the
average length of required edges at a vertex determines the length of all edges at that
vertex. This option disables this requirement and allows other criteria to determine the
edge lengths. Note that this applies to all edges that Mmg considers as required, not only
those that are marked as such in the input mesh.

-nreg Normal regularization using laplacian-antilaplacian smoothing. This normalizes the
length and orientation of the normals at vertices (which have been computed from the
normals at triangles surrounding each vertex). Normals at vertices are used to compute
the Bézier patch along which new surface points will be inserted and are included in Mmg
output under the Normals keyword.

-xreg [(float)] Surface regularization by adaptation of vertex coordinates using laplacian-
antilaplacian smoothing. This affects only Surface vertices, which includes those that lie
on domain boundaries. The modifications are done near the end of the analysis stage,
before any other mesh modifications are made. This option has an optional parameter:
the regularization factor, with a default value of 0.4. The value must be between 0 and 1.
Higher values yield stronger regularization with a higher risk of instability resulting in
mesh problems.

-nsd (integer) Save only the subdomain with this index. The default value is 0, which saves
all subdomains.

-octree (integer) Specify the maximal number of points per octree cell (only available without
the PATTERN compilation flag). The octree is used by Mmg to partition the mesh vertices
and thus, to speed up the insertion of vertices. During the insertion step, we don’t want
to insert a vertex too close to another one. Thus, before inserting a point, we search the
octree cell to which the new point will belong and we check if it is not too close from
another point of this cell or of one of the neighbouring cells. By default, an octree cell
may contain at most 32 vertices, then it is split into 8 cells. You can use the -octree
option to modify the maximal number of vertices per octree cell or to disable the octree
(-octree -1).

-optim This allows to preserve the initial sizes of the mesh edges in order to improve the
mesh quality without modifying the edge lengths. The prescribed size at a mesh vertex
is computed (by the MMG3D_DoSol API function) as the mean of the lengths of the edges
passing through this vertex. Mmg preserves the mean of the edge lengths at vertices.
Thus, if the edges passing through a vertex have very different sizes, the resulting mesh
may be far from the initial one. This option has no effect if a size map is provided.

-optimLES Strong isotropic mesh optimization for large-eddy simulations [3].

-rn (integer) Turn on (1) or off (0) vertex and element renumbering. Renumbering is done
to ensure that neighbouring vertices/elements are near each other in memory, as much
as possible. This can greatly improve the performance of codes that use the output
mesh, and of Mmg itself. This option is only available if Mmg was compiled with the
USE_SCOTCH compilation flag and if the SCOTCH library (

) was found. The default value is 1.
The renumbering has a random component. Therefore, when renumbering is activated,
the order in which Mmg sees the elements may vary from one run to another, and, with
identical parameters, the resulting mesh may vary slightly in terms of number of vertices
and elements, and quality.

4.2 Specific ParMmg options

-niter (integer) controls the number of parallel remeshing-repartitioning iterations. The de-
fault value is 3, which is quite low for most applications. More iterations can result in
a better overall (mean or median) element quality, but there have been cases where the
incidence of very bad elements was seen to increase with the number of iterations. This
may be a particularity of complex multimaterial meshes.

-nlayers (integer) controls by how many mesh edges a parallel interface is displaced to
repartition the mesh. A value of 2 or 3 is recommended. The default value is 2. High
values can worsen load balancing.

-mesh-size (integer) controls the size (in elements) of the mesh groups that are sequentially
remeshed on each process. The default value is negative, meaning that each part will be
one mesh group. The argument must be a pure decimal number; exponents are silently
ignored.

-v controls the verbosity of the ParMmg code itself

-mmg-v controls the verbosity of the internal (serial) mmg3d functions.

-d enables debug mode for ParMmg

-mmg-d enables debug mode for the internal mmg3d functions

-field (filename) loads a data field to interpolate from the input to the output mesh

-noout disables mesh output

-centralized-output instructs ParMmg to write output in a single file, even if the input was
read from multiple files. By default ParMmg will write distributed output when the input
was distributed. This option only has effect when .mesh or .meshb output is chosen
because all other formats are intrinsically parallel (HDFS5, VTU) or serial (pVTU).

https://gitlab.inria.fr/scotch/scotch
https://gitlab.inria.fr/scotch/scotch

-distributed-output instructs ParMmg to write output in multiple files, even if the input
was read from a single file. By default ParMmg will write centralized output when the
input was centralized. This option only has effect when .mesh or .meshb output is chosen
because all other formats are intrinsically parallel or serial.

-metis-ratio (integer) specifies the number of metis supernodes per mesh

-groups-ratio (float) specifies the allowed imbalance between current and desired group
size. It must be larger than 1 and the default value is 2. This option is obsolete and may
be removed from future versions.

-nobalance disables load balancing of the output mesh

-pure-partitioning instructs ParMmg to perform only mesh partitioning; no level-set dis-
cretization or remeshing

5 Parameter file

A parameter file can be used to enable some specific features of Mmg. By default, Mmg reads
a DEFAULT .mmg3d or a (basename) . mmg3d parameter file.

The parameter file allows for example to set edge length requirements separately per element
reference, and to specify a material mapping in level-set mode.

For more informationsee https://www.mmgtools.org/tutorials/tutorials_parameter_
file.html.

6 Environment variables

The operation of Mmg can be influenced with environment variables. This is primarily meant
for debugging purposes.
MMG_SAVE_ANATET1 save and quit after geometric remeshing (PHASE 2)
MMG_SAVE_DEFSIZ save and quit just before gradation
MMG_SAVE_GRADSIZ save and quit just after printing gradation info
MMG_SAVE_ANATET2 save and quit just after gradation and quality analysis (before optional
renumbering and FEM topology testing)

7 Error and warning messages

This is a non-exhaustive overview of error and warning messages that may appear.

MMGS_coquilFaceErrorMessage and WARNING MMGS_coquilface An edge that is sup-
posed to be manifold (part of exactly one surface) was found to have more than two
boundary faces attached to it. This means that the surface involved is not in fact a mani-
fold surface, and Mmg is trying to do something that requires it to be manifold. Mmg can

https://www.mmgtools.org/tutorials/tutorials_parameter_file.html
https://www.mmgtools.org/tutorials/tutorials_parameter_file.html

deal with non-manifold edges but it will not perform the test on them that leads to this
error message, so this really means that a surface you provided was not manifold, or Mmg
mishandled it. ridges and required edges are also excluded from these tests.

Unable to collapse Mmg could not complete the operations that are supposed to reduce the
number of mesh entities and increase the element quality. A mesh will be output but it
won’t be very good.

MMGS_minQualCheck: too bad quality for the worst element A tetrahedron has a volume
of less than 10~!3 in Mmg’s internal normalized coordinates (in which the longest dimen-
sion of the mesh is 1).

8 Common problems

semantics of the input files Mmg uses .sol files for different purposes, and automatically
reads the .sol file with the same base name as the mesh file it reads. Stale .sol files can cause
error messages or unexpected behaviour when they were created for a different purpose. Note
also that, for each mesh it saves, Mmg saves also a .sol file containing a size map. Without
options telling it otherwise, Mmg will read this file when it is run on its own output.

ridges ridges in a mesh can make remeshing harder, and Mmg detects ridges automatically
unless told not to do so with the -nr or -ar options. In some cases it can be better to let your
own software mark the desired ridges and disable Mmg’s ridge detection.

nonmanifold situations on the outer mesh boundary When the outer mesh boundary is
flat, Mmg will normally leave it so. However, if a domain touches the outer mesh boundary with
a single vertex, an ambiguity arises in the orientation of the surfaces that meet in this vertex
and Mmg may move it slightly outward or inward. If this is undesirable it can be prevented by
marking the vertex as a required vertex.

precision Since Mmg normalizes all coordinates before performing operations, and translates
them back afterwards, it is possible that output coordinates are not exactly the same as input
coordinates, even if a vertex did not move.

distributed input ParMmg does not check the data that describe the relations between mesh
parts in distributed .mesh format (section 9.3). Errors and unexpected features may well cause
it to crash.

9 File formats

9.1 native mesh format

Mmg’s native mesh format is called .mesh format (after the extension), Medit format, MMG
format (after the software) or Gamma Mesh Format (GMF, after the project team Gamma at

Inria). It is a flexible and compact format for surface and volumetric meshes in two or three
dimensions. It exists in both ascii and binary versions. Files in this format have the extensions
.mesh and .meshb. The extensions are meaningful to the software: they distinguish the ascii
and binary versions of the format.

Mmg mesh format comes in versions 1 and 2, version 2 having double-precision (64-bit) real
numbers. GMF, which developed alongside Mmg and is not fully compatible, also has versions
3 and 4 with 64-bit integers. These differences are only meaningful in the binary version; the
ascii version has in principle unlimited number ranges (but Mmg does have limits).

Since the binary version stores internal pointers in the file it also has limitations in file size.
Versions 1 and 2 binary files are limited to 2GB.

The documentation on this format is a bit dispersed. Currently the most complete and up-
to-date description is included with the source code of libMeshb (

) by Loic Maréchal. LibMeshb is a very generic library for reading
and writing files in .mesh(b) and .sol(b) formats.

There are older and incomplete descriptions in the book on mesh generation by Frey and
George [7] and in the online documentation of the medit program (in French) (

).
GMF continues to evolve: version 8 of libMeshb, currently under development, will recognize
more keywords than the 207 that version 7 recognizes.

9.2 data or “solution” files

Files containing numerical data defined on mesh entities have extensions .sol and .solb, for
“solution,” and also come in ascii and binary versions. In some cases the data a user wishes
to provide is indeed a solution to some equation, which governs for example the mesh density
needed for its next approximation. But these formats are used for many different purposes. The
files can provide a metric or “size map,” a level set, etc. The data can be scalar or vector. The
.sol format is a companion to the .mesh format and is similarly organized.

9.3 distributed .mesh format

In the ExaQUte project! a distributed version of the .mesh format has been developed. This
means that the mesh is spread over multiple files, and the files contain information about how
their mesh part relates to the other parts. The boundaries between the parts are described in
terms of vertices or triangles (or both, but that is redundant). The distributed version can in
principle use any version of the .mesh format, ascii as well as binary.

The format works with local numberings for all entities. To link with the neighbours, either the
boundary vertices or boundary triangles are given a global numbering which is stored in the

1EXAscale Quantification of Uncertainties for Technology and Science Simulation, ,
2018-2021. The project does not have a website anymore but does have a Github group:

https://github.com/LoicMarechal/libMeshb
https://github.com/LoicMarechal/libMeshb
https://www.ljll.fr/~frey/logiciels/Docmedit.dir/Docmedit.html
https://www.ljll.fr/~frey/logiciels/Docmedit.dir/Docmedit.html
https://cordis.europa.eu/project/id/800898
https://github.com/ExaQUte-project
https://github.com/ExaQUte-project

files, together with the numbers of the parts they are shared with. Normally, one would use one
of the following combinations of keywords:

* NumberOfPartitions + ParallelTriangleCommunicators +
ParallelCommunicatorTriangles or

* NumberOfPartitions + ParallelVertexCommunicators +
ParallelCommunicatorVertices

In addition, ParallelTriangles and ParallelVertices can be given.
The format defines the following keywords:

NumberOfPartitions Total number of parts.

NumberOfPartitions
<Nparts>

ParallelTriangles This identifies the parallel triangles, i.e. the triangles that are shared with
other parts. They are identified by their local triangle indices. This supposes that these
triangles have been declared in the Triangles field. This field is redundant but some Mmg
users rely on it. It is useful for applications that do not need to know with which other
part a triangle is shared, and can be used for debugging. For debugging purposes, mmg3d
can read this keyword too.

ParallelTriangles

N_parallel_triangles # number of parallel triangles
id_t1 # local index (place in the Triangles field)
id_t2

id_tN

ParallelTriangleCommunicators This identifies the parts with which triangles are shared,
and the number of triangles that are shared with each of them. The order in which they
are stated attributes a sequential index to them, starting at zero. This index is used in
ParallelCommunicatorTriangles. The partition identifiers are also numbers starting at
ZEero0.

ParallelTriangleCommunicators

Ncomm # number of parts we share triangles with
ID_part Nr_shared # part ID and nr of triangles shared with it
ID_part Nr_shared

ParallelCommunicatorTriangles This connects the local triangle numbers with the global
ones, and with the communicators listed in ParallelTriangleCommunicators. NOTE in-
deed it uses global indices; this was thought to be more practical for user input. The last
number on each line is the sequential communicator index, not the part number itself.

There is no count after the keyword; the number of lines that follows is the sum of all
Nr_shared in ParallelTriangleCommunicators.

ParallelCommunicatorTriangles
ilocal iglobal icom
ilocal iglobal icom

ParallelVertices This works like ParallelTriangles. This field is redundant but some Mmg users
rely on it. It is useful for applications that do not need to know with which other part or
parts a vertex is shared, and for debugging. For debugging purposes, mmg3d can read
this keyword too.

Parallel VertexCommunicators This works like Parallel TriangleCommunicators

ParallelCommunicator Vertices This works like ParallelCommunicatorTriangles

9.3.1 binary keywords

In the binary version of the .mesh format the field names are replaced by integers. Mmg uses
the following values for the distributed mesh keywords:

70 ParallelTriangleCommunicators
71 ParallelVertexCommunicators
72 ParallelCommunicatorTriangles
73 ParallelCommunicatorVertices
74 NumberOfPartitions

These values are incompatible with Gamma Mesh Format/libMeshb, which has

70 ISolAtVertices, rin,omqn
71 ISolAtEdges, v, oriqt
72 ISolAtTriangles, ity o"iiin
73 ISolAtQuadrilaterals, "iv, o "ijii"
74 ISolAtTetrahedra, ity o"iiiit

where the last two columns indicate the numbers that are expected to follow.

No binary keywords have been defined for the (redundant) parallel entities ParallelVertices,
ParallelTetrahedra,ParallelTriangles,ParallelQuadrilaterals,andParallelEdges.

9.3.2 implementation features

ParMmg ignores ParallelTriangles and ParallelVertices.

Mmg does not save ParallelVertices, ParallelTetrahedra, ParallelTriangles,
ParallelQuadrilaterals, and ParallelEdges.

If an input file contains both ParallelTriangleCommunicators and
ParallelVertexCommunicators, ParMmg uses only the former. Consequently, it ignores
ParallelCommunicatorVertices when ParallelCommunicatorTriangles is present.

ParMmg expects to read files named (basename) . (index) . mesh where (basename) is the base-
name given as the input argument -in (basename).mesh and (index) is an integer number
starting at zero and ranging to the number of parts. It will also output files this way, using the
basename from the -out argument, or appending .o to the basename from the -in argument.
When reading, ParMmg infers from the file (basename) . 0 .mesh how many parts and files there
are. Their number must match the number of processes with which ParMmg is running.

ParMmg will write the ParallelCommunicatorTriangles ordered by communicator: the
triangles shared with the first communicator are listed first, followed by those shared with the
second communicator, etc. This is a consequence of internal data structures and methods. There
is no guarantee that it will remain this way.

ParMmg does not perform very strong checks on the mesh distribution data. Errors and
unexpected features may well cause it to crash.

ParMmg expects the global indices to be larger than 0 and smaller than the total number of the
respective entities. There are no checks but a larger number can cause a segmentation fault.

9.3.3 future plans

Because of the incompatibility with libMeshb and other difficulties the MICROCARD-2 con-
sortium is considering a replacement of the distributed mesh keywords, to be discussed with the
maintainers of Mmg and libMeshb and with other users.

9.4 other file formats

Mmg3d can read and write Parallel vtkUnstructuredGrid format (VTU) (

), while
ParMmg supports the parallel version of this format (pVTU), but not the centralized version.
These formats are only available if Mmg was compiled with VTK support.

Optionally, ParMmg can be compiled to also read and write Hierarchical Data Format ver-
sion 5 (HDF5) (). The data structure is
a straightforward translation of the .mesh format. Some of the keywords of the .mesh format
become attributes in HDFS, e.g. Dimension and NumberOfPartitions. Data fields such as
Vertices are split and renamed to store for example the integer references and the corner and
required flags separately from the floating-point coordinates. Thus, vertex data are stored in the
fields ppoint, pref, and preq.

Both meshes and data can be read and written in HDF5 format. Metadata accompanying the
HDF?5 files is written in eXtensible Data Model and Format (XDMF).

https://docs.vtk.org/en/latest/vtk_file_formats/vtkxml_file_format.html#punstructuredgrid
https://docs.vtk.org/en/latest/vtk_file_formats/vtkxml_file_format.html#punstructuredgrid
https://support.hdfgroup.org/documentation

10 Other sources of information

The ParMmg wiki (https://github.com/MmngTools/Parlmg/wiki) covers command-line
usage (tersely), library usage (which we do not cover in this report), and information about the
algorithms of ParMmg. It also includes several tutorials.

The mmg3d, mmg2d and mmgs code and API documentation can be found on https://
github.com/MmgTools/mmg.

The website of the Mmg consortium https://mmgtools.org/ has installation instructions,
tutorials, descriptions of the algorithms and data structures, a list of publications, an image and
movie gallery, and information for new contributors.

A technical report authored in 2019 by Cirrottola and Froehly explains the design decisions in
the ParMmg code and compares it to alternatives [4].

LibMeshb (https://github.com/LoicMarechal/liblMeshb) by Loic Maréchal is a very
generic library for reading and writing files in .mesh(b) and .sol(b) formats. The code repository
includes a comprehensive English-language documentation of the formats.

Acknowledgements

The initial development of ParMmg was performed within the framework of the ExaQUte
project, funded by the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 800898. It has received funding from the FUI22 ICARUS project,
funded by Région Nouvelle-Aquitaine (RNA) under grant agreement 17001260-031 and the
Fonds Unique intérministeriel (FUI) under grant agreement No DOS0050687100.

Improvements in the mmg3d and ParMmg codes were funded by the MICROCARD project
(https://microcard.eu). This project has received funding from the European High-
Performance Computing Joint Undertaking EuroHPC (JU) under grant agreement No 955495.
The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and France, Italy, Germany, Austria, Norway, and Switzerland.

Work on ParMmg and its documentation was funded by the MICROCARD-2 project (project
ID 101172576). The project is supported by the EuroHPC Joint Undertaking and its members
(including top-up funding by ANR, BMBF, and Ministero dello sviluppo economico). Funded
by the European Union. Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or EuroHPC. Neither the European
Union nor EuroHPC can be held responsible for them.

https://github.com/MmgTools/ParMmg/wiki
https://github.com/MmgTools/mmg
https://github.com/MmgTools/mmg
https://mmgtools.org/
https://github.com/LoicMarechal/libMeshb
https://microcard.eu

References

[1] C. Dapogny, C. Dobrzynski, P. Frey. Three-dimensional adaptive domain remeshing, im-
plicit domain meshing, and applications to free and moving boundary problems. J. Comp.
Phys., 2014;262:358-378. doi:10.1016/7.jcp.2014.01.005.

[2] G. Balarac, F. Basile, P. Bénard, F. Bordeu, J.-B. Chapelier, L. Cirrottola, G. Caumon, C.
Dapogny, P. Frey, A. Froehly, G. Ghigliotti, R. Laraufie, G. Lartigue, C. Legentil, R. Mercier,
V. Moureau, C. Nardoni, S. Pertant, M. Zakari. Tetrahedral remeshing in the context of

large-scale numerical simulation and high performance computing. MathematicS In Action,
2022;11:129-164. doi:10.5802/msia.22.

[3] Pierre Benard, Guillaume Balarac, Vincent Moureau, Cecile Dobrzynski, Ghislain Lartigue,
Yves D’Angelo. Mesh adaptation for large-eddy simulations in complex geometries. Int. J.
Numer. Meth. Fluids, 2016;81:719-740. doi:10.1002/£f1d.4204.

[4] Luca Cirrottola, Algiane Froehly. Parallel unstructured mesh adaptation using iterative
remeshing and repartitioning. Research report 9307, Inria, Nov. 2019. https://inria.
hal.science/hal-02386837vl1.

[5] Charles Dapogny, Florian Feppon. Shape optimization using a level set based mesh evolution
method: an overview and tutorial. Comptes Rendus Mathématique, 2023;361:1267-1332.
doi:10.5802/crmath.498.

[6] P.J.Frey, F. Alauzet. Anisotropic mesh adaptation for CFD computations. Comput. Methods
Appl. MEch Engrg., 2005;194:5068-5082. doi:10.1016/7.cma.2004.11.025.

[7] Pascal Jean Frey, Paul-Louis George. Mesh Generation; Application to Finite Elements.
Wiley, second edition, 2008.

https://dx.doi.org/10.1016/j.jcp.2014.01.005
https://dx.doi.org/10.5802/msia.22
https://dx.doi.org/10.1002/fld.4204
https://inria.hal.science/hal-02386837v1
https://inria.hal.science/hal-02386837v1
https://dx.doi.org/10.5802/crmath.498
https://dx.doi.org/10.1016/j.cma.2004.11.025

	PROJECT SUMMARY
	DELIVERABLE SUMMARY
	Introduction
	Concepts
	mesh entities
	mesh properties

	Overview
	ParMmg Algorithm
	Running ParMmg

	Command-line arguments
	Common options for mmg3d and ParMmg
	Specific ParMmg options

	Parameter file
	Environment variables
	Error and warning messages
	Common problems
	File formats
	native mesh format
	data or ``solution'' files
	distributed .mesh format
	other file formats

	Other sources of information
	References

