
Automated Software Metadata Conversion and1

Publication Based on CodeMeta2

Marie Houillon1, Jochen Klar2, Tomas Stary1, and Axel Loewe1
3

1Karlsruhe Institute of Technology (KIT), Germany4

2Independent Software Developer5

Reproducible research requires publication of software together with appropriate6

metadata. Different metadata standards exist for different steps in the research7

software publication process: the Citation File Format (CFF) became very popular8

to provide information on how users are supposed to cite the software, DataCite9

is one of the established standards for research data archiving and CodeMeta is an10

extension of schema.org specifically tailored to research software. If research software11

developers must maintain a whole set of metadata files in different formats with12

largely overlapping content, it poses a risk both to data consistency and to adoption13

of good software publication practices. Therefore, we developed pipelines that put14

developers in a position to only maintain a CodeMeta file, from which CFF and15

DataCite files are automatically generated. These pipelines can easily be integrated16

in continuous integration and deployment environments. They also provide tools for17

software publication via tagged releases, creation of BagIt and BagPack files and18

publication on the research data repository RADAR.19

1 Introduction20

Research software development is a fundamental aspect in research [1], and it is now acknowl-21

edged that the FAIR principles (Findable, Accessible, Interoperable, Reproducible) [2], histori-22

cally established for research data, should also be applied to research software [3]. In particular,23

reproducible research requires that software and its associated metadata can be found easily by24

both machines and humans, and that they are retrievable via standardised protocols. In this25

context, several metadata standards are widely used across the scientific community:26

• the Citation File Format (CFF) aims to indicate to users how to cite a software package27

• DataCite is a standard Metadata scheme for archiving digital assets28

• CodeMeta [4] is an extension of schema.org created to standardize the exchange of software29

metadata across repositories and organizations30

1

All of these standards serve specific purposes and several of them are required to cover the31

whole software lifecycle. However, research software developers should ideally not be burdened32

with maintaining a whole set of metadata files in different formats and largely overlapping33

content. This poses a risk both to data consistency and to adoption of good software publication34

practices in the first place.35

Therefore, we have developed a framework, named openCARP-CI, which allows developers to36

easily create and maintain the metadata associated to research software, by only maintaining37

a CodeMeta file from which CFF and DataCite files are automatically generated. The frame-38

work also allows publishing software according to the FAIR principles: releases with persistent39

identifiers can be created, archived and published on the open research data repository RADAR.40

2 Description of Components41

2.1 The openCARP-CI environment42

The openCARP-CI package [5] is part of the openCARP Collaborative Development Environ-43

ment [6], an advanced technical infrastructure for collaborative research software projects based44

on GitLab1. It is composed of a set a Python scripts around the publication and long-term45

preservation of software repositories (see Fig. 1). These tasks can be performed automatically46

when being integrated in GitLab Continuous Integration and Deployment (CI/CD) pipelines.47

openCARP-CI was created for the openCARP simulation software [7] but has its own separated48

repository and can be adopted for any arbitrary project hosted on GitLab.49

In the next section, we describe the different pipelines related to metadata management and50

software publication available in openCARP-CI.51

Script Functionality
create_cff generates Citation File Format (CFF) metadata file
prepare_release updates version and dateModified in metadata
create_release creates release in Gitlab
create_datacite generates DataCite metadata file
create_bag creates BagIt package
create_bagpack adds DataCite XML to BagIt
prepare_radar reserves DOI on RADAR
create_radar creates archive and uploads it to RADAR
run_markdown_pipeline updates Grav CMS website
run_bibtex_pipeline treats BibTex file for publications on website
run_docstring_pipeline extracts docstrings from Python scripts

Table 1: Components of openCARP-CI

2.2 Automated metadata conversion52

In order to ensure the coherence of metadata across different metadata file formats and to53

remove the burden of copying and maintaining redundant metadata information in several files,54

1GitLab: https://about.gitlab.com

2

openCARP-CI offers scripts that convert metadata expressed in the CodeMeta standard to other55

metadata formats. As a consequence, developers only need to maintain codemeata.json as the56

unique metadata file for their software.57

The script create_cff generates a Citation File Format (CFF) metadata file from the58

CodeMeta file [8].59

The script create_datacite generates a DataCite XML file from the CodeMeta file.60

Figure 1: Example of a Gitlab CI job for automated creation of the DataCite metadata file

2.3 Creation of releases61

A software release associated with a version number can be created on GitLab using the scripts62

prepare_release and create_release. prepare_release updates the CodeMeta file with a63

given version number and date. When using the script as part of a CI pipeline, this information64

is taken from the tag of the release and the current date. The script create_release actually65

creates the software release on GitLab using its API.66

2.4 Creation of archives67

openCARP-CI allows creating software packages destined to persistent long-term storage in68

research data repositories. These archives are created using the BagIt File Packaging Format2,69

which is designed for reliable storage and transfer of arbitrary digital content.70

The script create_bag creates a BagIt package containing the given assets, using the Python71

package bagit-python3. The script create_bagpack adds a DataCite XML file to the BagIt72

package, as recommended by the RDA Research Data Repository Interoperability WG [9].73

2.5 Software publication74

With the scripts prepare_radar and create_radar, developers can publish their software in the75

research data repository service RADAR4. In the RADAR repositories, datasets are assigned a76

persistent DOI (Digital Object Identifier) and published in accordance with the FAIR principles.77

The script prepare_radar assigns a DOI and a RADAR ID to the dataset and adds them78

to its metadata (codemeta.json). The script create_radar creates the release in the RADAR79

service. This is done in a two step process, where first a dataset is created in RADAR, which80

contains the metadata. Then, in a second step, the different assets of the release (e.g. the source81

code and different compiled binaries) are uploaded.82

2BagIt description: https://www.rfc-editor.org/rfc/rfc8493
3bagit-python repository: https://github.com/LibraryOfCongress/bagit-python
4https://radar.products.fiz-karlsruhe.de/en

3

3 Pipeline setup in a software repository83

3.1 Prerequisites84

The pipelines provided in openCARP-CI can be set up directly in any software project which85

fulfills the following conditions:86

• The project’s repository is under version control using Git and hosted in a GitLab instance87

• A Docker runner is configured for the project’s GitLab CI pipelines88

• Optionally, for using the RADAR pipeline, developers must have credentials for publishing89

in a RADAR instance90

3.2 Integration in Gitlab CI pipelines91

build-
datacite

checkReadme

release-
create

archive-
bagpack

release-
datacite

build test release archive

archive-
radar

prepare-
release

Figure 2: Example of openCARP-CI workflow (each box represents a job in the Gitlab CI pipeline)

Fig. 2 shows an example of workflow integrating the metadata and publication pipelines. This92

workflow can be included in another GitLab project using this process:93

• In the project repository, go to Settings → Access Tokens, and create a token with the role94

Maintainer and scopes api and write_repository. Copy the token value.95

• Go to Settings → CI/CD → Variables and choose Add Variable. Create a masked variable96

named PUSH_TOKEN and as a value, paste the copied token.97

• Create a variable with key PRIVATE_TOKEN and as a value enter $PUSH_TOKEN.98

• Copy the Gitlab CI configuration files (.gitlab-ci.yml and .gitlab/) from the openCARP-99

CI repository to your software repository. These files should be adapted to the needs of your100

project. In particular, you can deactivate the release on RADAR by setting ENABLE_RADAR101

to "false" in .gitlab-ci.yml.102

• Create a commit with the tag pre-vX.Y. The CI jobs will update metadata and create a103

release commit with the tag vX.Y.104

4 Conclusions105

The package openCARP-CI provides tools for automatic metadata conversion and software106

publication according to the FAIR principles, which can be automated in CI/CD pipelines on107

4

the GitLab development platform. After the initial setup, the user maintains a single metadata108

file in CodeMeta format. Other metadata formats are automatically generated from this file.109

The releases and supporting files are archived automatically for every new version of the software.110

We believe the automated metadata conversion based on CodeMeta can be a useful tool for111

many research software developers and can facilitate the adoption of good software publication112

practices by reducing the effort for developers.113

Acknowledgements114

We gratefully acknowledge support by Deutsche Forschungsgemeinschaft (DFG, projects LO2093/1-115

1 and LO2093/9-1) and Karlsruhe Institute of Technology (KIT). This project has received fund-116

ing from the European High-Performance Computing Joint Undertaking EuroHPC (JU) under117

grant agreement No 955495. The JU receives support from the European Union’s Horizon 2020118

research and innovation programme and France, Italy, Germany, Austria, Norway, Switzerland.119

References120

[1] H. Anzt, F. Bach, S. Druskat, et al., “An environment for sustainable research software in121

Germany and beyond: Current state, open challenges, and call for action,” F1000Research,122

vol. 9, no. 295, 2021. doi: 10.12688/f1000research.23224.2.123

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The fair guiding principles for124

scientific data management and stewardship,” Scientific Data, vol. 3, no. 1, pp. 1–9, 2016.125

[3] N. P. Chue Hong, D. S. Katz, M. Barker, et al., “FAIR principles for research software126

(FAIR4RS principles),” 2021. doi: 10.15497/RDA00068.127

[4] M. B. Jones, C. Boettjiger, A. C. Mayes, et al., “Codemeta: An exchange schema for software128

metadata. version 2.0.,” K. D. Repository, Ed., 2017. doi: 10.5063/schema/codemeta-2.0.129

[5] M. Houillon, J. Klar, A. Loewe, T. Stary, and openCARP consortium, openCARP-CI, 2023.130

doi: 10.35097/974.131

[6] F. Bach, J. Klar, A. Loewe, et al., “The openCARP CDE: Concept for and implementation132

of a sustainable collaborativedevelopment environment for research software,” Bausteine133

Forschungsdatenmanagement, no. 1, pp. 64–84, 2022. doi: 10.17192/bfdm.2022.1.8368.134

[7] G. Plank, A. Loewe, A. Neic, et al., “The openCARP simulation environment for cardiac135

electrophysiology,” Computer Methods and Programs in Biomedicine, vol. 208, p. 106 223,136

2021. doi: 10.1016/j.cmpb.2021.106223.137

[8] S. Druskat, J. H. Spaaks, N. Chue Hong, et al., Citation File Format, version 1.2.0, 2021.138

doi: 10.5281/zenodo.5171937.139

[9] RDA Research Data Repository Interoperability WG, Research Data Repository Interoper-140

ability WG Final Recommendations, 2018. doi: 10.15497/RDA00025.141

5

